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EFFECTS OF UNCERTAINTIES 
IN THE DOMAIN ON THE SOLUTION 

OF NEUMANN BOUNDARY VALUE PROBLEMS 
IN TWO SPATIAL DIMENSIONS 

IVO BABUSKA AND JAN CHLEBOUN 

ABSTRACT. An essential part of any boundary value problem is the domain 
on which the problem is defined. The domain is often given by scanning or 
another digital image technique with limited resolution. This leads to signif- 
icant uncertainty in the domain definition. The paper focuses on the impact 
of the uncertainty in the domain on the Neumann boundary value problem 
(NBVP). It studies a scalar NBVP defined on a sequence of domains. The 
sequence is supposed to converge in the set sense to a limit domain. Then the 
respective sequence of NBVP solutions is examined. First, it is shown that 
the classical variational formulation is not suitable for this type of problem as 
even a simple NBVP on a disk approximated by a pixel domain differs much 
from the solution on the original disk with smooth boundary. A new definition 
of the NBVP is introduced to avoid this difficulty by means of reformulated 
natural boundary conditions. Then the convergence of solutions of the NBVP 
is demonstrated. The uniqueness of the limit solution, however, depends on 
the stability property of the limit domain. Finally, estimates of the difference 
between two NBVP solutions on two different but close domains are given. 

1. INTRODUCTION 

The analysis presented in this paper has been motivated by the discrepancy 
between the shape of a real body and its computer description (called geometrical 
model or briefly model). 

Any real-life data contain some uncertainty due to measurements and simplifi- 
cations. It is common to represent a real-life body by the geometrical model and 
to neglect the fact that the model is obtained by postprocessing the raw data from 
scanning, for example. Instead of the true body, the model is used for solving par- 
tial differential equations. However, natural questions arise: Are we authorized to 
choose a particular geometrical model as the representative of the body? Should 
we take a whole family of models into consideration? Can we get rid of assump- 
tions we added to the raw data by a particular postprocessing method? How does 
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FIGURE 1. Original digital image 

the discrepancy between the body and its geometrical model influence a boundary 
value problem (BVP) we wish to solve? 

These questions are closely related to the problem of model validation (see [R]). 
Though natural, they are not mathematically analyzed. 

Let us restrict ourselves to the problems stemming from digital imaging and 
image processing. A digital image of a real-life body bears some inaccuracy, the 
source of which is both the scanning and pixel-limited resolution. Setting the 
scanning aside and concentrating only on the digital image, we still face uncertainty 
regarding the boundary of a digital domain. We can color black the pixels lying 
fully inside the domain and white the fully outside pixels. Then a boundary layer 
can remain. A layer of gray pixels indicates that these pixels are partly "in" and 
partly "out". Thus the boundary is not known exactly and any approximation 
or smoothening can be problematic. (We refer to [BPHN] for more about data 
smoothening.) 

Example 1.1. Figure 1 shows a rather fuzzy digital image. Since pixels are rough, 
contrast low, and data noisy, we can hardly define the boundary separating the 
supposedly white domain and a supposedly black background. The image can be 
postprocessed in various ways. 

We can set a threshold brightness value to suppress the gray color and to strictly 
define sets above (white pixels) and below (black pixels) the threshold (see Figure 
2 (left)). 

We could also apply a sophisticated algorithm to guess and approximate the 
boundary by a piecewise polynomial curve (see Figure 2 (right)). These algorithms 
use various heuristic approaches based on additional assumptions usually not jus- 
tified in relation to the solved problem (see [BCL], [BPHN]). D 

The reader probably agrees that low quality images pose difficulties. But even 
analysis based on high quality images can lead to incorrect results. 

For example, the common formulation of the Neumann boundary condition could 
be misleading if an uncertain boundary is taken into account without realizing 
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FIGURE 2. Postprocessing: Black and white image (left), smoothed 
boundary (right) 

further consequences. We illustrate this in the following example showing what 
happens if a naive approximation of the Neumann problem is used. 

Example 1.2. Let Q be a disc with the center at the origin and the unit radius. 
We consider the weak solution u E H1 (Q) of the Neumann problem -An + u = 0 
in Q and Ou/Ov = 1 on OQ, v is the outward normal unit vector. In detail, 

(1.1) j(Vu. 
-Vv + v)dx -Ja vds Vv e H(Q). 

Jo JaQ 

To fix ideas, let us consider the physical interpretation of (1.1). The disk Q 

represents a thin cylinder after dimensional reduction. The part of the cylinder 
boundary represented by O• is in contact with a heat producing coil. The heat 
enters Q through O• with the flux equal to 1. In this setting, (1.1) can be viewed 
as the equation modeling a time independent heat flow. 

Let us suppose we have an infinite sequence of digital images of Q at our disposal 
and assume that Q is approximated by a sequence {(,QnOn• of pixel-formed domains 

Qn, Qn C Qn+1 C R2, Qn /7Q , i.e., the larger the n, the tinier the pixels. 
Then it seems to be natural to approximate (1.1) by 

(1.2) j (Vun.- Vv + 
un) 

dx-j 

vds Vv 

_E 

H 

(Qn,) 
Jo Jan 

and seek the respective solution un e H1(Qn). Let us mention that the pixels are 
sometimes used as a natural mesh for the finite element method. 

Will u, tend to u if 
Qn, 

--+ Q? The answer is "no". 
A simple reason is that the length of 

OQn, 
does not converge to the length of 

0Q. Indeed, if the diameter of a pixel domain Q,, is close to 2, then the sum of 
all vertical and horizontal boundary segments of Qr, is close to 8. Denoting In the 
length of O2Q, we thus get 

lim,,,_ 
In = 8. 

Let us consider v = 1 in (1.1) and (1.2). Then Vv = 0 and we get 

(meas Q)1/2 u 

-- 

uIIL2 

•(n) 

+ ul dx 

>Jn(un-U)Jdx-judx= 
undxjudx-Ja ds-jads. 

Consequently, 

(1.3) lim inf lu - un llL2(n) > (8 - 2ir)/xF. 
n--+ c< 
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It is possible to prove that solutions u, converge to a function u0o solving a Neumann 
problem on Q but with a different boundary condition, i.e., Ouo/ov = go - 1 on 
DQp. 0 

Let us compare three problems: 

Bua (1.4) -Aua + UaO 0 in a, = 1 on D•; 

OUb (1.5) -AUb +Ub = 1 in Q, =b0 ond0Q; 

(1.6) -Auc + uc = 1 in Q, u= 1 on DQ. 

Problem (1.4) coincides with (1.1). If (1.5) and its pixel approximation were con- 
sidered instead of (1.1) and (1.2), respectively, approximate solutions Ubn would 

perfectly converge to Ub. On the other hand, (1.6) encounters difficulties similar to 
those in Example 1.2. This indicates that the toothy boundary and its length are 
not the only culprits. We must also take into account the type of the boundary 
condition. 

Let us pay attention to the right-hand side of (1.2). We were wrong setting 

dun/•v 
= 1. Is it possible to replace the classical formulation so that the above- 

mentioned difficulty will be avoided? 
Let us suppose that we know the heat produced by the coil and entering Q 

through DQ. We can get it with the aid of a voltameter and an amperemeter. The 
same amount enters each Q,. We know the length of D(9n and thus we are able 
to calculate an averaged heat flux along oQn. Obviously, the longer 

Qn, 
the lower 

average we get. 
In general, the right-hand side of (1.1) and (1.2) has the form fa gv ds and 

oan gnv ds, respectively. Functions gn depend on Qn. Let us assume that we have 
two points P1, P2, and that P1, P2 E do and P1, P2 E D•n. Then 

P2 P2 
g dsn= g, dsn Pi P, 

because the amount of heat flowing between P1 and P2 does not depend on the 
path connecting P1 and P2. It resembles the Stieltjes integral. The idea is to find a 
function G and to substitute 

•v 
dG for fa gv ds and on v dG for fanu gnV ds. 

Pixel domains are fuzzy and their boundaries do not coincide with DQ; therefore 
G should be defined at least on a strip containing D0. In other words, here we 
are working with resultants as we often do in elasticity theory. It is not difficult to 
construct function G on the basis of such physical considerations (see also Example 
1.3 and Example 2.1). 

We observe that g = OG/Os = curl G - v along D0, curl Gdef(DG/Ox2, -DG/Oxl) 
and 0/Os stands for the tangential derivative. If G is sufficiently smooth and defined 
on Qs, then 

S vgds =j curl G - Vvdx vEH1(Q). ans Ja, 

The equality suggests that we can substitute the domain integral for the boundary 
one. 

Remark 1.1. Going back to the physics, we can see how massively our model relies 
on averaging and scanning. The interaction of the coil and the body Q is a contact 
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problem. Its local features are not known. Does the coil touch Q at all points or are 
there gaps? 

We focus on global features expressed via the energy or energy-like norms defined 
on Q. Also, the scale of Q is much greater than the scale of the local contact 
uncertainty. That is why we neglect the local view and prefer the global one which 
is based on resultants rather than on pointwise loads. This corresponds to the 
well-known Saint-Venant principle used in mechanics. O 

Using the above defined G, we get 
foa 

dG = 0, which implies fa g ds = 0. As 
a consequence, we cannot find G corresponding to problem (1.1). We will see a 
remedy in Section 2, however. We can simply seek two functions G1, G2, or we can 
reformulate the BVP. 

Another natural construction of G appears in the next example. 

Example 1.3. The torsion of a general noncircular cylinder of cross section Q is 
treated in almost any textbook on the theory of elasticity (see, e.g., [NH, Section 
10.5]). In textbooks, the final goal is to derive the Dirichlet BVP for the Prandtl 
potential function. Before the Prandtl potential can be established, one has to 
study the following Neumann BVP: 

(P def 
(1.7) Az = 0 in Q, 

g=z•l 
- Xlv2 on =. dv 

Defining G(x)def(x + 
x2)/2, 

x =- (X1, 2) R 2, we get g = curl G.v along 0Q. The 
weak formulation of (1.7) reads: Find ~E HI( Q), up to a constant, such that 

(1.8) jV8- 
Vvdx = 

jcurl 
G - Vvdx Vv E 

H(), Jo Jos 
where we used the Green theorem to get rid of the boundary integral. Let us notice 
that G is unique (up to a constant), defined in IR2, and is given in a straightfor- 
ward way by the boundary condition in (1.7) because the condition applies to any 
admissible domain Q. 

Unlike (1.7), where g cannot be defined if 0Q is fuzzy, G is defined irrespectively 
of the fuzziness. As the fuzziness is limited to a thin boundary layer, (1.8) enables 
us to assess the effect that the uncertain boundary has on the solution ?p (see 
Section 4). O 

We can draw a general conclusion from Examples 1.1 and 1.2. It is necessary to 
extend the notion of well-posed problems to a continuous dependency of the BVP 
solution on the domain of definition, i.e., to generalize Hadamard's ideas (see [H]). 

We already saw (Example 1.2) that a sequence of pixel-based problems can have 
little in common with the seemingly natural limit BVP. 

Though we do not have an infinite sequence of pixel domains in practice, we 
should ask what the limit solution could be if our digital camera delivered a sequence 
of domains ••n converging to a limit Q. It means that the stability of the domain 
Q with respect to the Neumann BVP comes in the forefront. 

The stability issue was studied in [B1], [B2] for rather general Dirichlet prob- 
lems and the Neumann BPV with the homogeneous boundary condition. Roughly 
speaking, if Q is stable, then solutions of equations on Qn, converge to the function 
which solves a natural limit problem on Q2, i.e., the solution is not sensitive to the 
approximation of the domain. It is known that if d0 is Lipschitz, then Q2 is stable 
(see also Section 3). 
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If Q is unstable, then, in general, the limit depends on the sequence {n)fn=l 
This means that the solution is significantly influenced by the uncertainty in the 
approximation of the boundary 02. 

The circle is stable with respect to the classical Neumann BVP with the homoge- 
neous boundary condition and is unstable for nonhomogeneous boundary conditions 
(cf. (1.1)-(1.2)). Nevertheless, we can reformulate the nonhomogeneous boundary 
conditions so that the stability (i.e., the nonsensitivity of the solution to the bound- 
ary) occurs (see Section 2). 

In real life, we are limited to a few digital images of the true body so we do not 
know the limit domain Q. We only assume that the images give us a lower and an 
upper bound of (possibly unstable) Q; namely, two domains low, and Qup such that 
Q0ow C Q C Qup. 

Our goal is to show that the Neumann problem for a nonhomogeneous boundary 
condition can be reformulated so that it is stable in contrast to the classical (weak) 
formulation, and to assess the solution of the Neumann BVP on the unknown 
domain Q by means of the solutions of the Neumann BVP on 

Qlow 
and Qup. 

This paper is organized as follows. Section 2 is devoted to the reformulation of 
the Neumann boundary condition, i.e., function G is introduced. In Section 3, we 
show that if a monotone sequence of domains is considered, then solutions of the 
Neumann problem in respective domains converge to the solution of a naturally 
defined Neumann boundary problem on the limit domain, where a proper space of 
test and trial functions is given. Also, the stability issue for the Neumann problem 
is discussed. Estimates concerning the distance between solutions on 0iow, Q and 

Qup are presented in Section 4. Section 5 deals with the stability of the domain 
which is the limit of a nonmonotone sequence of domains. Further comments on 
Example 1.1 together with some conclusions constitute Section 6. 

2. THE NEUMANN PROBLEM DEFINED ON A SET OF DOMAINS 

In this section, we formulate the Neumann problem in a way transferring a 
boundary integral into a domain integral. First we introduce an equality and then 
we will show its connection to the standard Neumann problem with a nonhomo- 
geneous boundary condition. As stated in the Introduction, we focus on plane 
problems. 

Throughout the paper, we assume any domain Q (or Q,), i.e., an open con- 
nected set, as well as its closure Q (or Q,) embedded into a fixed bounded domain. 
Without loss of generality, we can suppose B is such a superdomain. If not stated 
otherwise, the domains we deal with have Lipschitz boundary. We also suppose that 
the domain and its closure have identical boundaries, i.e., 0Q = 0Q. Exceptions 
(domains with cracks) will be noted. 

Let us start with some notation. The symbol Hk(Q), k = 1,2, stands for 
the standard Sobolev space of square integrable functions, the generalized par- 
tial derivatives up to the order k of which are square integrable on Q. The norm 
and the kth seminorm in Hk(Q) is denoted by I| lk,o and I - k, , respectively. In 
the space [L2(Q)]m, m - 1, 2, of m-tuples of square integrable functions, the norm 
will be indicated by | - || o, regardless of m. The subspace of all functions from 
H1 () with traces vanishing on 0Q is labeled by H (Q). We will also make use 
of the factor space HI(Q)/P, the element of which is an affine set constructed as 
a function from HI(Q) and all constants on Q. HI(Q)/P, with the scalar product 
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(', ")l,o 
inducing the Sobolev seminorm I - 1,0, is a Hilbert space and, moreover, 

1 

Ii,n 
becomes its norm. C1(Q) and C"(Q) will denote functions continuous on Q 

up to the first derivative, and functions infinitely smooth on Q, respectively. The 
space of all measurable functions bounded in Q and its norm will be symbolized by 
LO(2) and I1 - ||.P, respectively. 

To define the problem we will study, we assume a second order elliptic operator 
the coefficients aij of which form a 2 x 2 symmetric matrix A. We suppose aij c 
L"(B) and 

2 

(2.1) aij(x) i j 
>_ 

lCA iR2, 
i,j=1 

for each ( E R2 and a.a. x E B, cA > 0 is a constant independent of x and (. We 
also consider a function b E L"(B). Let us introduce the following continuous and 
symmetric bilinear forms: 

(2.2) 
a (u, v)df AVu - Vv dx, vL H1 (2); n~ 

( defv v) ? d, u, H(). a( , v) a(u,v) + buv dx, u,v EE ( 

It holds that cA u 
, 

< aO (u, u) independently of u and Q. We assume b guaran- 
teeing that a constant cAb > 0 independent of u and Q exists such that 

(2.3) cAb I, a (u, u), u HI(). 

Let us have a function G E Hj (B)n H2 (B) and a Lipschitz domain Q. We define 
the conjugate gradient of G (two dimensional rotation) by 

V*G f curl G df (OG/xZ2, -OG/Oxi). 
Applying the Green theorem and the orthogonality of the unit outward normal 
v = (vl, v2) to the unit tangential vector t =(-v2, vl), we infer 

(2.4) 
V*G - Vvdx -V*G- vvds- 

G )- v dx 
aQ x xl 

xl-2-XI 

X aX 2 

-J VG tvds, 
vEHI 

(l), 

because the terms with second mixed derivatives in the sense of distributions cancel 
each other. It holds that I*G ofllo, = |VG o, = IGl,n. 

The following definition will help us to avoid a boundary integral in the Neumann 
problem with a nonhomogeneous boundary condition. 

Let G C HI (B) be fixed. We define the linear continuous functional 
foa 

v dG 

operating on the space H1(2): 

(2.5) j vdG 
df /V*G 

- 
Vvdx, vE HI(Q). 

Jan J 

Let us notice that fan v dG - 0 if v E H (Q). It is a.consequence of (2.4). 
The Neumann boundary value problem reads (see (2.5)): Find u E H1(Q) such 

that 

(2.6) an (u, v) v dG Vv H1(Q). 
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Remark 2.1. If G is continuously differentiable on n, we can define g = DG/Os a.e. 
on D•. Then V*G - v = VG - t = dG/ds = g on the boundary, i.e., 

JV*G -Vvdx =j vg ds Vv E H1(Q). 

The solution of problem (2.6) fulfills, in the weak sense, the equation - div(AVu) 
+ bu = 0 with the boundary condition Ou/DvA = g, where Du/IDA stands for the 
conormal derivative. O 

Problem (2.6) can be considered rather strange because fo dG = 0 indicates 
that aQ would fit (2.6) better than an. We chose (2.6) with demonstrative purposes 
in mind though it would make the analysis simpler if b and V*G were avoided. 

The latter happens if fa g ds 0 is to be treated. Then we need two functions 
G1, G2 E Hi(B). We define G = (G1, G2) and 

?7def +G 9vd 
+(1G2) (2.7) v dG e G -Vv dx + + v dx, 

an nDx1 Dx2 

An analogy to Remark 2.1 is G - v = g on 0Q. 
Let us point out that G or G are viewed as primal quantities defining the problem, 

and g is only a derived quantity which, of course, can be beneficial for an insight 
into the modeled problem. Functions G, G should reflect the physical background 
of the problem. 

Example 2.1. Let us construct G for problem (1.1) in Example 1.2. For D0 is the 
unit radius circle, it is easy to get the unit normal v- = (v, v2) 

V( l2 
( = V/X) 22 + 1() -, V2()= , r= +x2, x . 

As g = G - v, we directly check 

(2.8) Gi(x) = cxlrj, G2(x) = x2Trj = = gcr+1, j= ...,-1, 01,.. 

where c is a constant. 
Functions G, g are well defined in R2 except for the origin, where a singularity 

might be. We can get rid of the singularity by multiplying G by a smooth function 
X, 0 < X 1, such that x = 0 in a neighborhood of the origin and X = 1 outside a 
circle with the center at the origin and radius, say 1/2. 

If c = 1 in (2.8), then any choice results in g = 1 on D0. To pick up a specific 
function, we realize the fact that the greater r, the lower heat flux because the total 
amount of heat remains constant (see the Introduction). On that basis, j = -2 
seems to be a realistic choice in (2.8). O 

The particular choice of G, G has no impact on convergence results achieved in 
Section 3. However, it determines some values in error estimates (Section 4) and 
this is the reason why physical background is to be taken into account. 

Let us point out two facts. First, constructing G, we can limit ourselves to the 
vicinity of DQ because the fuzziness will reside right there. That is why XG does not 
cause any harm as X = 1 there. Second, we can leave toothy, nonsmooth boundaries 
DQ, out of consideration. If the boundary condition has the form (2.5) or (2.7) 
and if Q is stable (see the Introduction and Section 3), then Q2n - - implies the 
convergence of the respective solutions of the BVP regardless of the smoothness 
of DaQ. It explains why the naive approximation of (1.5) is harmless (G = 0). 
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Convergence details will be given in the next section. Thus, in the course of setting 
G or G, we can pay attention to smooth boundaries only. 

Remark 2.2. A different approach to Example 1.2-2.1 would be to split u into two 
parts u = u0 +•Ul, 

where ul is a function chosen in such a way that fn 
u• 

l/Ov ds = 

fan g ds. As a consequence, (1.1) is transformed into a new equation for unknown 
uo. It holds fan ouo/Ov ds = 0. Then G is found for this BVP. Choosing ul = X In r, 
we get oul/Ov = 1/r = 1 on o0Q (cf. Example 2.1), i.e., we can set G equal to 0 or 
any constant. O 

Remark 2.3. We can also add a volume load to the problem, i.e., to seek u E H1(Q) 

(2.9) aQ(u, 
v)-= 

f fvdx 
•+ 

v dG Vv E H1(), 

where f e L2 (Q). If a? is considered in (2.9), then the compatibility condition 

fa f dx + fa v dG = 0 must be assumed. We can meet difficulties in keeping the 
condition if Q is approximated by Q,. If, moreover, G stays instead of G in (2.9), 
then fan1 IdG = 0. In this case, the compactness in Q of the support of f is 
supposed too. The latter is not necessary for the existence of a solution to (2.9) 
with G but it simplifies arguments when a sequence of domains approaching Q is 
considered (see Section 3). 

In our analysis, we will only use (2.6) because (2.9) brings nothing but longer 
formulae as the term fQ fv dx can be treated in a similar way as the right-hand 
side of (2.6) (see Sections 3 and 4). O 

Lemma 2.1. For any G E H' (B), problem (2.6) has a unique solution u E H1 (). 

Proof. The bilinear form aQ is continuous and H1((Q)-elliptic (see (2.3)). The right- 
hand side of (2.6) is a continuous linear functional on H1 (Q) as follows from (2.5). 
The existence and uniqueness is due to the Lax-Milgram lemma. Ol 

Remark 2.4. If ao is considered in (2.6), then the solution u is unique in H1(Q)/P. 
Indeed, the right-hand side of (2.6) fulfills the compatibility condition by (2.5). 
It equals zero if v is a constant. The bilinear form ao is continuous and 
H1 (Q)/P-elliptic. Again, the Lax-Milgram lemma finishes the proof. O] 

Introducing the Neumann problem in the form (2.6), we have made the Neumann 
boundary condition easily definable on a family of subdomains of B. 

Formulation (2.6) is advantageous for theoretical purposes. It is clumsy, however, 
to use (2.5) in practical computation since it would mean computing VG and 
integrating over the whole domain Q. That is why we will show some relationship 
between (2.5) and the Stieltjes integral. 

To make use of the classical definition of the Stieltjes integral, we suppose for 
brevity that Q is simply connected and we introduce the arc mapping 3 : [0, 1] --+ O0, 
3(0) = 3(l), l > 0 is the length of 0Q. Then we define the Stieltjes integral of v 
along 0Q with respect to dsG as 

S 
vdsGdef=J vo/3d(Gop), 8Jo 

where the integral on the right-hand side is the usual Stieltjes integral on [0, 1]. 

Lemma 2.2. Let Q be a simply connected domain and let Gp = GoP/ be absolutely 
continuous on the segment [0, l], gp = dGp/dt, and g = gp 0 /-1 : • -+ R1 
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belong to L2(OQ). Assume that f{pn} '=l, Pn E C1(Q), is a sequence converging 
to a function v in H1 (Q). Then sn = o 2 Pn dsG exists in the classical Stieltjes 
sense and 

limn--, so = 
oa 

- dG, where the value on the right-hand side is given 
by (2.5). 
Proof. By virtue of the Lipschitz boundary 0Q, the existence of the sequence 

{pn},=l 

is guaranteed due to the density of C"(Q) in H1(Q). 
We get 

Sn = 
Qn dsG = 

(Pn 0 o)gr dt = j ng ds. 

We find that limn s,o 
sn 

= so E R because, due to the trace theorem, 

ISn - I = Pn- pm)g ds I |n - m lo,a gllo,aQ - 
0o 

if n and m tend to infinity. 
It remains to prove that we can also arrive at so via (2.5). 
The function G possesses the tangential derivative OG/Os = g almost everywhere 

on &0Q. By (2.4) we deduce 

SV*G 
- 

Vp 
dx = 

-apgds 
= 

pn 
dsG = 

sn. 

Applying the convergence pn -- v in Hi (Q) and s, - so in R1, we finish the proof 
by the equality 

SV*G 
- Vvdxz= so. 

Remark "2.5. Lemma 2.2 allows us to define fao v dsG for v E HI(Q) as the limit 
of values sn. If Q is Lipschitz but not simply connected, then 

foa 
vdsG can be 

defined as a finite sum of Stieltjes integrals over all maximal connected components 
of •2. O 

Remark 2.6. The above definitions and lemmas can be generalized even to non- 
Lipschitzian domains. An example is a domain Q with a cut used to model a 
crack. Then G, G1, G2 H1(B), as they have discontinuity along the crack, but 
G, G1, G2 E Hi (). The Neumann boundary condition is defined along both sides 
of the crack. Calculating the Stieltjes integral, we have to follow one side of the 
crack to its tip and go back integrating the values on the other side. O 

We will consider a sequence of Neumann problems dependent on a domain. 
Our goal is to prove the convergence of solutions if domains converge to a limit 
Q. Since we do not suppose either smooth boundaries of the domains or uniform 
cone property, we can hardly apply the material derivative approach widely used 
in optimal shape design (see [HN], [HCK]). 

3. CONVERGENCE ANALYSIS 

Let us suppose that we have a sequence 
{jn})-1 

converging to a domain Q in 
the set sense, i.e., x E Q implies 3nx Vn > nx x E Qn, and 3y, ny Vn > ny y E 
implies y E Q2. We assume K- = 2. 
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We confine ourselves to monotone sequences of domains because, as we will 
show later, it is sufficient to analyze the stability of Q with respect to them. They 
correspond to those studied in [B1], [B2]. 

First we prove some convergence properties for solutions of the Neumann bound- 
ary problem defined on a sequence of monotonically expanding or shrinking do- 
mains. Then we set sufficient conditions guaranteeing that the limit functions 
coincide with the solution of a naturally defined problem on the limit domain (see 
the Introduction for the stability of a domain). 

We consider almost the same equation as in (2.6): 

(3.1) ueH an(u, v) V*G.Vv dx Vv E H, 
Jo 

except for the space H which will be defined later. 
Let us have a sequence of subdomains •n such that n, / Q, n = 1, 2,..., i.e., 

Qn C n+i C Qn+I C Q and U",=1 Q = . We assume each Qn has the Lipschitz 
boundary but no such assumption is put on Q. Following the proof of [B2, Theorem 

9.1], we define the sets (I1 -= i, I n+l n+1 \ Q, 
,-n Uk=n+l 

k 
Through the sets 

Hn 
= {v E L2(Q) : vn E H1(n), v|lk e H1()k), k = n + 1,... }, 

n = 1, 2,..., and the scalar products 

[U, v]n (Vu - V v) dx, n = 1, 2,..., 
k=l k 

inducing the norms 11. -, we define the spaces 

Hn ={v 

Hv 
: 
HIv, < o}, n 1,2, 

.. 
One can see that H, is a Hilbert space for any n and that H+lI C H,. 

As in the proof of [B2, Theorem 9.1], it can be shown HTd= nn-,1 Hn 
is equivalent 

to HI(Q). Though [B2] uses a sequence of domains with a smooth boundary and a 
factor space norm, the proof is applicable to our case too. Moreover, the subset of 
functions infinitely smooth in Q is dense in H1 (see [M, Theorem 1.1.5/1, 1.1.5/2]). 

Lemma 3.1. Let Qn / Q and let un E H1(2A) solve the equation 

(3.2) an 
(Un, v) 

= v 
dGn 

Vv E 
Hi(,), an 

where Gn 
= 

G2n, 
n = 1,2,..., G E Ho(B). If ii stands for a function from Hn 

equal to u on n and to zero on W'J, then i -n uG (weakly) in any space Hk, 
k = 1,2,..., uG E Ht and UG solves equation (3.1) where H = HT. 

Proof. For the sake of brevity, we will write u instead of uG in the proof. 
We have 

CAblulll•1, n ?an (ULn, u~n) IGn?l,n II ll, 11n 
which further implies 

(3.3) CAbllUnlll,~1 
< IGI1,B = C, 

where C is a positive constant independent of n. Passing to the sequence {Un}n= , we see that it is also bounded in any fixed space Hk if n > k is considered (otherwise 

ui ? Hk in general). 
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This means that a weak limit uk E Hk exists for a subsequence 
{Un•i 

}= of 

{fun}j-l. 

We can see, however, that also uk E Hk+j, j = 1,2, .... 
Indeed, setting j = 1, taking v E Hk+j-1 and focusing on 80k+j-1 = aQk+j-1 

84k+j, we can define u+j, v1 as the trace of 
ukk+j-1 onk+-1on Qk+j-1 and 

S+j) v2 as the trace of uk , Vlk+j On (Qk+j-1, respectively. Defining the 
linear continuous functional on Hk+j-1 

F(v) (U+j 
- 

+j )(v - V2) ds, 
Ja0k+j-1 

we have F(Un) = 0 for n > k + j as u, E Hn C Hk+j-1, n > k +j, has no jumps 
on O~k+j-1. Thus 

S= lim F(;i,) = F(uk) = I U+j - U2+ k+ I 2 
1k+j k+jllo0rk+3. 

Then we can add 1 to j and repeat the above argument. 
By this we deduce that the subsequence 

{Uj }il converges to a function u E Ht. 
The convergence is weak in Hk for any fixed k. 

We need to prove that u solves (3.1) with H = HT = H1( ). 
To this end we employ the technique which has proven itself useful in optimal 

shape design, cf. [HN]. 
Let us choose an arbitrary v E HT and define a subdomain Qm C Q2, 

(3.4) =m = {X E Q : dist (x, &Q) > 1/m}. 
If ni is sufficiently large, we have 

Ii (i) 
- 

ani (un, v) 

= (AVun, 
" 

Vv + 
bun, 

v) dx + anm (un,, v) 

SIll(i, m) + anm (un,, v). 

By the boundedness of A, b and u, , we can estimate 

(3.5) Il1(i,m)| Cl Un |1,, V1la\Qm - C211Vl,Q\m - c2I(m), 
where C2 > 0 does not depend on i, m. 

For v fixed, aQnm(un,, v) is a linear continuous functional on Hk, k arbitrary. By 
the weak convergence of 

un, 
and HT C Hk, 

(3.6) lim anm (un , v) = aam (u, v). 
i--*)oo 

On the basis of (3.5) and (3.6), 

-C2I(m) + am (u, v) < lim inf I,(i) < lim sup 
Il(i) < C21(m) + am (u, v). 

i-- o i--- 

The parameter m can be arbitrarily large causing I(m) -+ 0 and, consequently, 

(3.7) lim I,(i) = an (u, v). i*oo 

We also have 

(3.8) limr J V*G Vvdx =JV*G Vvdx. 
i--- c) 

n i 

Combining (3.2), (3.7), and (3.8), we get (3.1) for a fixed but arbitrary function 
v E HT, i.e., u solves problem (3.1). 
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We also deduce that the limit function of any weakly convergent subsequence of 

{unnC=l 
is a solution to (3.1). The solution is unique in H1(Q), thus the whole 

sequence converges weakly to u. O 

We can even prove convergence in a stronger sense. 

Lemma 3.2. Under the assumptions of Lemma 3.1, 

lim ans (UG - Un, UG - Un) = 0. 
n---+oc 

Proof. Again, we abbreviate u = UG in the proof. Using (3.2) and (3.1), we estimate 

I(n) - an, (u - 
u,• 

u - un) < aq (u, u) - 2aQ, (u, u,) + aQs (Un, un) 

(3.9) = V*G-Vu dx - 2 V*G -Vudx+ V*G.-Vudx JQ J2n Jan 

-I1 -- 
2(2n) 

-+3(n). 

As in the proof of Lemma 3.1 (cf. (3.8)), we have 

(3.10) lim I2(n) = V*G.- Vu dx. 
n--oo }n 

Integrating separately over Qm and •,• \ Qm (see (3.4) for Qm), we get 

(3.11) lim sup I3(n) 

• 
C|IG•Ql,\m 

+ V*G. Vudx, 

where C > 0 does not depend on m. To infer (3.11) we made use of the weak 
convergence and boundedness of {u,}~Li. 

Taking into account (3.9)-(3.11), we can estimate 

0 < limsup 1(n) -f V*G. Vudx + CIGl,o\Qn + j V*G Vudx 
n- oo m 

= - V*G- Vudx + 
CIG|l,\om. m )\Q- 

Since the magnitude of m is arbitrary, lim I(n) = 0. O 
n--•oo 

Remark 3.1. Lemmas 3.1 and 3.2 remain valid even if Q is a domain with a crack 
approached by an increasing sequence of subdomains Q~ . If Qn / Q2, then we do 
not need to assume o9Q = On. The Neumann problem is stable from inside for any 
Q. Ol 

Remark 3.2. To reformulate Lemmas 3.1 and 3.2 if a? is substituted for aQ, we 
have to define Hn as factor spaces with respect to the space of constants, omit the 
nondifferentiated term in the definition of [u, v] , and use the seminorm IUn 1,0,n 
instead of IlUn ll,n 

in (3.3). The proofs remain basically unchanged. [O 

We will focus on a sequence Qn \ ~2 now, i.e., n C n+1 C 
n++1 

C Qn and 

n=•_1 

Qn 
- 

K. Unlike the previous case, we simply define 
Hn 

= H1(Qn). The Hilbert space HI 
is defined as the I1 Ill,,a-closure of all functions continuous together with their first 
derivatives on a neighborhood of Q. In general, HI C HT = HI(Q). 
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Lemma 3.3. Let 
Qu 

\ Q and u, E Hn solve equation (3.2). Then 

(3.12) lim a?(uG _ Un, uG - Un) = 0, n--oo 

where uG E H = HI solves (3.1). 

Proof. As before, we will simply write u instead of uG hereafter. By an argument 
similar to that used to infer (3.3), 

(3.13) CAbllUnii1,Q 
? 

CAbllUnlll1,)Qn C, 

where C > 0 is independent of n. Again, a sequence { un i 1• converging weakly 
to a function u e HI exists. Indeed, any un 

falls into the H1 (Qn)-closure of smooth 
functions on Qn, i.e., urnij E HI because K C Qn. 

To prove that u solves (3.1), we choose an arbitrary function p such that it 
is continuous together with its first partial derivatives on a domain Q2: D Q, i.e., 

plQ EH1. 
If i is sufficiently large, then we have Qni C Qe which implies PIK E H'(Qni). 

We introduce 

I1 (ni) - 
an• 

(Un i, ) = 
aQn, \UnQ(un, ,) + a (un, ,?). 

Following the proof of (3.7), we deduce from the weak convergence of { uu,i 
I•20 

(3.14) lim I1 (ni) = aQ(u, ?). 

We also have 

lim 
V*G. 

-Vodx- 
=V*G.- V(pdx i ---+ o 

ni 

which, together with (3.14), proves equality (3.1) for an arbitrary smooth test 
function p. By virtue of the density argument, we conclude that u is the solution 
of problem (3.1) with H = Hi. 

Using the uniqueness argument, we infer that the whole sequence {un}•,"l 
con- 

verges to u weakly in H. 
Let us focus on (3.12), i.e., on 

(3.15) 0 < I(n) - an(u- Un, u - u?) < an(u, u) - 2aQ(u,u) + I2(n), 

where 

12(n)d a+tn (Un, Un) 

=- 

V*G- Vu, 

dx- 

+ 

V*G.- 

Vu 
dxz - 121(n) +22(). " 

n \Q J 

We get 

(3.16) lim I2(n) = V*G. -Vu dx = a(u, u) 
n--oo c 

as a consequence of 21(n) Ca G,,\ (see (3.13)) and the weak convergence 
Un 

-U. 
Using the latter, (3.16), and passing to the limit in (3.15), we finish the proof by 

lim I(n) = 0. 
n---oo 
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We have shown that Q is stable from outside and Ht C HT. The latter admits 

Ht# HT. 
If Ht = HT, then uG = UG and Q is stable in the sense that the limit of solutions 

coincides with the unique solution of the Neumann problem on the limit domain Q. 
If Q is stable with respect to monotone sequences of domains, then it is also 

stable with respect to any (including nonmonotone) sequence {Qn}•' converging 
to Q in the set sense. We postpone the proof because we will need some results 
contained in Section 4. The general stability issue will be treated in Section 5. 

Our next goal is to ensure the continuity of solutions of the Neumann problem 
with respect to a sequence of domains Qn. We wish to characterize the stable 
domain. 

We use different definitions of the space H in Lemma 3.1 and Lemma 3.3, re- 
spectively, and we need to get an identical space in both cases. To guarantee that 
Q is stable with respect to the Neumann problem (N-stable), it is not sufficient to 
have only &oQ = 0tQ (see [M, page 14] or [K] for a counterexample). 

Let us remind the a property as defined in [B2, Definition 5.3]. 

Definition 3.1. A domain Q Cft c B has the a property if for any point X E oQ 
there exist an open ball Bx c Bx C B with the center X and a vector 0 

: 
vx E RR2 

such that (Bx n 
)ttvx C for any t E (0, 1], where (Bx n Q)tvx = (x E IR2 

x + tvx E Bx n 
Qt}. 

If the boundary of a domain can be locally defined by a function, then the domain 
has the a property (see [B2, Remark 3, p. 170]). 

Let us recall that a domain Q is called starshaped if a point z E Q exists such 
that any ray with origin z has a unique common point with 0Q. 

The following theorem addresses the stability problem. 

Theorem 3.1. Let us have sequences {un, }=1 and {un2 l of solutions of the 
Neumann problem on domains Qn2 /7 Q and Qn2 \ Q, respectively. Let &oQ = 8-f 
and Q be starshaped or have the a property. Then for any G E HI (B), UG = uG 
in Lemmas 3.1-3.3. 

Proof. If Q is starshaped, then, due to [M, Theorem 1.1.6/1], the space C(Qf) is 
dense in H1(Q), i.e., HI = HT (see also [B2, Theorem 9.3]). 

According to [B2, Theorem 9.4], Q is N-stable with respect to a k-harmonic op- 
erator if it belongs to the Nikodym family of domains and possesses the a property. 
The proof refers to [B2, Theorem 5.5] and is directly applicable to the operator 
defined through an from (2.2). In that case, the a property alone is sufficient to en- 
force the N-stability because the Nikodym domain assumption is no longer needed 
as the space H1 is the closure in the Hi-norm (see also Remark 3.3). O 

Remark 3.3. As regards ao, Lemma 3.3 holds with a4 in (3.12) and the first semi- 
norms in (3.13). The space HI is given as the closure in I l,0 seminorm which 
becomes a norm in spaces factored with respect to constants. In general, elements 
of Hl can be distributions the first partial derivatives of which are square integrable 
functions. 

Then Theorem 3.1 is also valid under the assumption that &Q = &0, Q has the 
a property, and Q belongs to the Nikodym family of domains (see [B2, Theorem 
9.4]). Let us recall that Q is a Nikodym domain if any function, the first generalized 
derivatives of which are square integrable, is also square integrable on Q. A sufficient 
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condition for being a domain of the Nikodym type is the cone property (see [B2, 
Remark 1, p. 200]), which is obviously satisfied if Q is Lipschitz, for instance. O 

Remark 3.4. The technique used in this section to prove convergence can be directly 
applied to problem (2.9) with volume loads and (2.7) instead of (2.5). Functions f, 
G1 and G2 can be treated in a similar way as function G. O 

Remark 3.5. In our formulation, the stability of the domain with respect to the 
Neumann boundary value problem is the same for homogeneous and nonhomoge- 
neous boundary conditions. It is not true for the classical formulation (cf. Exam- 
ple 1.2). O 

4. ESTIMATES 

In the previous section, we proved convergence of solutions of the Neumann 
problem. In the current one, we will estimate the difference between solutions on 
different but "close" domains. To make ideas more lucid, we start with a general 
estimate and then temporarily confine ourselves to a rather special class of domains. 
Besides the norm || * |1,0 we will also use the energy norm 

l" 
IA A,= a(., .))1/2 

and seminorm I -A,Q=~~(., .))1/2. By (2.2)-(2.3) both norms are equivalent. 
Let domains Qlow, up and Q, iow C C Q C up C Qup C BC cI2, be 

given such that 0low1, O Qup are Lipschitz and OQ = ?i_2 but Q is not necessarily 
N-stable. If Q is unstable, then HI C HT = H1(Q), where HI is defined by means 
of a sequence 

{n}n'n=1, 
1Qn \ •. Approaching Q by a nonmonotone sequence 

fQm -- Q, we could get that the respective solutions um either do not converge or 
converge to a function E H solving (3.1) with H = H, where H is a space such 
that HI C H C HT. It can be UG uG. Though Q could be N-unstable, it can 
still be approximated by reasonable domains 10ow and ,up. This offers a possibility 
to approximate U_ by the solution of the Neumann boundary value problem on Qlow 
or -uup* 

Having Qm -+ Q, we observe that low C OQm C Qm C up for sufficiently large 
m. As in the previous paragraph, we can ask what the difference between um and 
the solution on Qup (or Qlow) might be. 

def def 
We denote the solution of (3.1) defined for 

QfQlow, 
H = H1 (Q), and Q3fup 

H = H1(Q3) by u1 and u3, respectively. Let u2 be the solution of (3.1) on a domain 
between LQ1 and Q3. 

We can choose between several possibilities. If Q is N-unstable and the above- 
mentioned space H is considered, then we can set Q2 = Q and u2 equivalent to the 
solution of (3.1) with H = H, HI C H C HT. If Q is N-stable, then Q2 = Q and 

u2 solves (3.1) with H = H = H1(M). If f0m is in focus instead of 0, then we can 
put Q2 - rm and u2 E H solves (3.1) with H = H1(Qm). 

As the estimates will depend neither on the stability assumption nor on our 
particular choice of Q2 and U2, any fixation of Q2 and u2 is the matter of formalism. 

def 
We stick to Q2 =f and u2 e H. 

def 
We will also need u12 and U23, solutions to auxiliary problems on Q12 Q2 \ 1 

def - def 
and Q23 = 3 \ Q2, respectively. We define %013 =3 \ 

1. 
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We seek U12 E Hl(Q12), u23 E H1(Q23) such that 

(4.1) 

j 
(AVu12. 

Vv + bul2v) dx = J V*G Vv dx Vv e 
H'(Q12), 

012 12 

j/ (AVu23. 

Vv + bu23v) dx = 23 V*G - Vv dx Vv E 
H1(23). 

23 23 

Based on (4.1), the estimate 

(4.2) 1ui1 2A,I~ = V*G. 
Vui 

dx < G1,a 
iUill,,, 

i i 12, 23, 
iJ o 

provides us with some assessment of U12, U23 if we put an assumption on G E Hi(B) 
and apply the Schwarz inequality to (4.2). 

Lemma 4.1. Assume VG e [Lc"(Qi)]2, i = 12, 23. Then 

(4.3) IlUjjlA,gQ < V/2(meas Qi)1/2 C--1/2 IVGj|oo,I2, 

where IIVG|II,,,, 
= max(OG/axl l Ioo,~i, IlOG/zx2 11o,Qi) 

Let us introduce the space H12 = H1(Q1) x H'1(12) and H23 = H1(Q2) X 

H1 (23) endowed with the scalar product and the norm induced by the scalar 

product and the norm on respective component spaces. We can use the same 

symbols as for the scalar product and the norm on H1(p2) as well as H1l(Q3) 
because 

meas(Q2 \ (Q1 U Q12)) = 0 = meas(Q3 \ (Q2 U Q23)). 

The following lemma shows a relationship between solutions of the Neumann 

problems on embedded domains. The couple (Ul, u12) belongs to H12 and (u2, u23) c 

H23. 

Lemma 4.2. Assume G E H1(Q3). Let PQ2 : H12 -* H and Po3 : H23 -~ 
H1(3) 

be the (-, -)A,Q2 -orthogonal and the (, 
.)A,Qs3-orthogonal 

projection mapping, respec- 
tively. Then PQ2 (Ul,U12) = u2, Ps3 (u2, U23) = u3, and 

(4.4) IJU21,Q2 ? 
IIu1II,At+ 

IU12 , 1, 3 IIU , II<U2A, + tIU2311 ,23 

Proof. Let us notice that if v E H, then vlQn E H1(Q1) and vl 12 E Hi()12) as 
H C H1(Q2). It is easy to show u2 = PQ2(U1,U12); i.e., for any v E H 

((U1, U12) - 
u2,Uv)Aa2 

= 
aql2(ul, v) + aQ12 (U12, V) - a12 (u2, v) 

= V*G. Vvdx V*G-Vvdx- V*G Vvdx = 0. 

1 ,212 2 

Similarly, u3 = P, (u2, u23) as ((u2, U23)-u3, 
V)A,3s 

= 0 due to v1Q2 E HI C H 

if v E H1(Q3)- 
The norm of the projection mappings P212, PQ3 is equal to 1, which implies 

inequalities (4.4). Ol 
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We can derive one simple observation from Lemma 4.2. Since (Ul, u12) - u2 and 
U2 are orthogonal with respect to (., ')A,02 and (4.4) holds, we get 

(4.5) 

u2 _ U1, < ?(u1,u 12) - 21I22 
= ((Ul, U12), (U1,U12))A,Q2 - (U2, (ui, U12) - U2 + U2)A,i2 
= IIUllI'4Q + JIU12 ,Qj,12 - IIU24,2 
? IIU1I,nQ - 

IIU3II,•3 
+ IIU12212 + IIU23 II23. 

Remark 4.1. Estimate (4.5) gives a hint for computation. We can approximate the 
unknown domain Q2 from inside and outside by Q1 and Q3, respectively. Then we 
approximate ul, u3 by a numerical solution and estimate IU121,12 + 

IU23A023 
by Lemma 4.1. O 

We will be interested in the value IIu2 - U1 IIA,Ql. We already know that, under 
some assumptions, Ilu12112 and Iu23 

123 
can be "small" quantities (see Lemma 

4.1). We also feel that if Q1 and Q3 are not much different, then the same should 
hold for respective norms of ul and u3. Plugging such results into (4.5), we would 
arrive at a desired estimate. 

The previous paragraph describes our goal for what follows. First, however, we 
confine ourselves to a particular family of domains. To simplify the notation, we also 
assume that b as well as all entries of the matrix A are constants. A generalization 
to nonconstant A and b is straightforward and only technical. 

Starshaped domains. Throughout this subsection, we deal with domains Q1, Q2, 
and Q3 having the following properties: 1, is a domain starshaped with respect to 
the origin of the coordinate system, 

3 = {yR 
2 y/a E• •}, 

where C > 1 is a given constant, and 1i C Q2 C Q2 C Q3 C•3 C B. Domain Q2 
can be N-unstable. 

As in previous paragraphs, we use subscripts 1, 2, 3 to tag the solution u of (3.1) 
respective to the domains just introduced. 

We define mapping x(x) = cax, y = x(x), which maps Q1 onto Q3. If a function 
u is differentiable on Q1 and v(y) = v(x(x)) = u(x), then elementary calculus leads 
to 

(4.6) 
au a,2 Ou - w - 2/D Ov 

_ 

(Ot 
, 

Ii 
_ U a 

1/D, 

(4.6) 
l l x 2 Ox 2 Xl O 

O1y2 
- 

O2 Xl1 OXl Ox2 

where D = Oyl/OXl Oy2/Ox2 
- 

Oy2/OXl Oylla/2. 
In our particular case, 

(4.7) D = cr2, Ov/9yl = 
a-l1u/Oxl, Ov/Oy2 

= 
O-1Ou/Ox2. 

As a consequence, we can infer, using the substitution theorem, that if v E H1 (3), 
v(y) = v(;(x)) = u(x), u e H1(Q1), then 

(4.8) 
11,Q3 = I ,U1, 1, VIA,03 = UIA,1, 

lvl ,Q3 = lul , + o12ulo ,1, 
IIVHl~,, = IUIin, ? a2blulI2 > IIUI12 n 

A,•l 
3 - [ [ ,I+I 1 IQ2 
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We can transform the solution ul into ul,(y) = u1 (x(x)) = u,(x) and compare 
it to u3 because both functions are defined on Q3. To this end we define Gl,(y) = 

Glia(x(x)) = Gl(x), G1 - GI,1 and formulate a few auxiliary lemmas. 

Lemma 4.3. Function uc, E H1(Q3) solves the equation 

(4.9) 
j(AVulo.- 

Vv + a-2bulv) dy = 

V*GI," 

-Vvdy Vv E 
H1(Q3). 

J3 3o 

Proof. We introduce 9(x) = v(x(x)). Then (4.7) and the substitution theorem give 

j/ (AVyula 
V.,v + a-2bulv) dy 

= , 
[A(a-'Vxul)- 

(a-1o'V )a2 + 
bul@i] 

dx 

= an, (uY) = jVG1. V~0a22/a2dx = V Glo - Vv dy, 

where subscripts x and y indicate the variable we use in differentiation. 

Referring to the equalities 

aQ3 (u3 - U1, v) 

= j [AV(u3 - 
Ula) 

. Vv + b(u3 - Ul)v] dy 

= j V*G- Vv dy 

- 
/ [AVua-. 

Vv + 
o-2bbulv] 

dy - (a2 - 1)a-2 bulav dy 
Jf3 3 

= 
V*G.- 

Vvdy - 
3V*Gl 

. Vv dy - (a2 - 1)a-2 jo 
bulav dy 

3s 3s 3 

and to the inequality 

uI II Vuldx<c-1 IloA,1 =Vcl u1 IA,01, 
uillA =. Ald X < Cbi 7GII, IU , , 

we can estimate 

(4.10) 

laQn(U3 - Ulca, v)I 
_ 

I Iv,3 IG - Glll1,Q3 + (a2 - 1)a-2bllulQll vIIo,~o, 
? IIVIll,2s(IG - GlaI1,Q3 + (a2 - 1)bllu111o,Q1) 

S|lvll2,7? (IG - Glia~,lQ + (a2 - 1) llU1IIA,7Q) 
SIlvlll,Q, (IG - Gll,,Q3, + (a2 - 1)vCAb1/2 Gll,~n ). 

Before we make the next step in estimating (4.10), let us formulate Lemma 4.4, 
which takes its motivation from [M]. 

Lemma 4.4. Let p E L1(Q3) n C(Q3) be a nonnegative function, and let Eo = 

(a - 1)do, do = supRIE1 IlxllI2. Then 

j (fax ?p(z) dz) dx 
< 3o 

(x) dx. 
1 3 O 
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Proof. We follow an idea which can be found in the proof of [M, Lemma 1.4.6]. 
We reformulate the integral on the left-hand side. To this end we define the 

function E(x) = (a - 1) ixIxIR2. Its value at x is equal to the length of the segment 
(x, ax). It holds 

0o 
(a - 1)diamQl. We can define (p(x) = 0 if x ? l3 and 

estimate 

J01(fx y(z )dz) dxx = Jj (je (x + +t- ) dt) dx 

< 
o 

(x + tx 2 ) dt dx = I. 
fn 100 FIIIR 

To estimate I, we define /(x, t) - +p(x +t xR), I4(t) - f~ (x, t)dx, and circles 

c(r) with the center at the origin and the radius r E (0, do). Then 

4I(t) = /(s, t) ds dr < f (s, 0) ds dr 
0J c(r) O c(r+t) 

Sdo+tj (s, 0) ds dr < j (x, 0) dx. 

0 c(r) Q3 

The first inequality is due to the fact that (.-, t) and (.-, 0) have identical values 

along c(r) and c(r + t), respectively, but the length of the circles is different. Thus 

I = 4(t) dt < (j cp(x) dx) dt = co j p(x) dx. 

Lemma 4.5. Let G e H2(Q3) and do be defined as in Lemma 4.4. Then 

(4.11) CG - GiI2 < 2a2(a_ )2(doIGI2, 3+ 

IGl•CI,)2 
Proof. We will write G, instead of G1~. First we suppose G E C"(B). Then G" 
is also smooth. As regards G,, we will distinguish between differentiating with 

respect to y = (y1, y2) E 3 and x = 
(X1,X2) E Q1, i.e., if we confine ourselves to 

xl, yl only, 

OaC(y~) G9O(y(E)) 1 OG(?) 
Gyl - yl a Olx y 

If fixed G and nonexpanded •1 are considered, then we can write 

OG(x) _ 
(y) 

(4.12) Ox 
x= 

- O C 3 
XZ1 ,i Y=1yX 

It is sufficient to show only an estimate for GY,, and G,,yi. We use Es as in 
Lemma 4.4. Making use of the above equalities, we obtain 

1 
Gy (y~ - Gyl(y) = G,y(aE) GxP) 

a 

= G,yi(ax-) - Gy ( ) ? 
G, 

(a y E 93, x E 91, y= ax. 
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Thus we have 

(4.13) 

I 
- (Gyl 

- 
Gyl 

)2 dy 
3o 

= ,[(G,, (ax) - G,, (x))2 

+ 2(G,,, (ax) - G,y, (x))G, , (x) 
+ (G,x (x)a 1)2]a2 dx 

-I + 12 +13. 

Taking into account 

G,y, (ax) - 
aG,, (x)I ? IVG,y, (z)I dz, 

the Schwarz inequality, and Lemma 4.4, we deduce 

(4.14) 
I ( I IVG,yl Idz a2 dx 

1x 

< 2 o a(j IVG,,• 12dz) dx < a2e 
IVG,•, 

2 dx. 

By the Schwarz inequality and a > 1, 

(4.15) 1121 2a2(a - 1)o(/ IVG,,, 12 dx)1/2(j G2 dx)1/2 
3 x1 

We estimate 13 by 

(4.16) I3 = (a - 1)2 G2 dx < a2 (a -1)2 G dx. 

1( aGJl1 

x . 

Combining (4.13)-(4.16) and the definition of Eo, we get 

I a2(a- 1)2 do ( VG,y12 dx)1/2+ ( G2x dx) 1/2]2 
(aly1 

7 

We can infer a similar estimate for G,y2 - G,Y2 and, consequently, (4.11) for 
smooth G. Since smooth functions are dense in H2(Q3), the proof is finished. O 

Lemma 4.6. Under the assumptions of Lemma 4.5, 

(4.17) InU3 - Ula lA,?3 
? (a - 1)8, 

where 

S= /2c 1b/2 a(dolGl2,?, + IGIl,Ql) 
+ Vbcj(a ? 1)1GIl,a. 

Proof. Applying (4.10) with v = U3- ul, and (4.11), we estimate 

IU3 - 
UlaIlA,1 

3 
?-S 

ILU3 - U l1,Q3 (IG - GlaIl,ns + (a2 - 
1)/-bcA/2IG 

1,GI) ? c1/2 lu3 - Ula IAs [V a(a - 1)(doIG2,1a3 + IGI1,,1) CAb l3- l 
Aa3-, 

+ (2- 1) C--1/2G-llJ,] . 
Cancelling Inu3 - ul IIA,f03 

on both sides, we get (4.17). 
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We can start to estimate the right-hand side of (4.5). 

Lemma 4.7. Under the assumptions of Lemma 4.5, 

1Ini - IIU3IA, _< (a - 1)O8C1/2 (|IG1,1, + lGI1,03). Ilu~ll'A,Q? - 
11•U311'AA= --IGI, 

G ••) 
Proof. The inequality in (4.8), the triangle inequality, and (4.17) lead to 

(4.18) llu1IIA,Ql < IlUIIa A,Q3 ? Illa U- U311A,P3 + IU311lA,Q3 
< (a - 1)0 + Ilu3lIA,073 

Since both ul and u3 solve (3.1) on %1 and Q3, respectively, we get 

(4.19) u•• llu ll,,QIGl,~, < ci 12u IIAQIGI••, 
i= 1, 3 - Ab t ,t 

Transferring Ilu311A,~3 to the left-hand side of (4.18), cancelling IlUillA,~i on both 
sides of (4.19), and plugging the quantities into 

llulliA7, - llU3lOz I1 = (llu11A,Qi 
- llU3llA, 3) (llu11 A,Qi + lU3llA,23)) 

we finish the proof. 

Theorem 4.1. Let VG E [L'(%)13)]2 and G E H2(Q3). Then 

11U2 - UlIA,Q, 
< (a - 1)cb/2 [o (lGl + G + jGj,) + 2(a + 1) meas 

lQCA1/2b|VGll 
2,43 

where 0 is defined in Lemma 4.6. 

Proof. By virtue of (4.5), Lemma 4.7, Lemma 4.1, and meas 013 = (a2 -1) meas 1, 

IlU2- U 
,II4i 

L IIAulIl,1 - 
IU311A,23 

+ IIU12IIA,Q, + IlIU23 IIA,23 

_ 
(a - 1)0c-A/2 (IGI,,aQ + IGI1,a) + 2(a2 - 1) meas m CAll 

|VGll12•2• 

Remark 4.2. As in the previous section, an can be replaced by a?. Then all results 
remain valid provided that we also substitute the first seminorm for the Sobolev 
norm and consider factor spaces H1IP instead of the Sobolev spaces H' at appro- 
priate places. Some parts would be even simpler as a result of b = 0 (see e.g., (4.8) 
and Lemma 4.6). O 

Remark 4.3. Let us emphasize that the estimate in Theorem 4.1 does not depend 
on the particular choice of u2, i.e., H. The estimate covers all possibilities discussed 
in the introductory part of Section 4. O 

Remark 4.4. The same upper bound as in Theorem 4.1 can be applied to estimate 

|lu3 - u2l2 . Indeed, by Lemma 4.2 (cf. (4.5)) JU-U2AQ2" 

Jlu3 - U211,22 Ilu3 - (u2, U23) II, 
= lU2A,2 + Ilu2311A,23 - ((u2, U23) - U3 + U3, U3)A,Q3 

? 
,• 

I ,Ull + IlU12llA,Q1 + IlU23 --,,23 
- IIU3lA,03, 

and the last part coincides with the right-hand side of (4.5). 
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Domains with the Lipschitz boundary. We would like to generalize the idea 
utilized in the previous subsection to not necessarily starshaped domains, namely 
to the class of domains with the Lipschitz boundary. 

Having a starshaped domain •1, we can easily "blow it up" to get a superdomain 
Q3 D D 2 D Q2 :i1. The following lemma shows that we can blow up even more 
general domains, though the mapping doing this job is not as simple as before. 

Lemma 4.8. Let l, be a domain with the Lipschitz boundary. Then a parameter 
Eo can be found such that for any , 0 < E < Eo, a smooth mapping x. and a domain 
Qf exist and it holds Q = ~ (1) , Oi C Q'. Moreover, dist(x, %l) < eC for any 
x E Q' \ ol, where C is an arbitrary constant greater than one. 

Proof. The idea of the proof comes from the technique used in [N1] and [N2]. The 
proof is outlined as follows. 

The Lipschitz boundary can be locally defined as a graph of a Lipschitz function. 
This can be closely approximated by a smooth function. By means of such functions 
certain local mappings will be defined. These together with the partition of unity 
will lead to the mapping <,. 

Let S be a global Cartesian coordinate system for Ol. According to the definition 
of the Lipschitz boundary (see [NH] or, equivalently, [N2]), there exist real numbers 
a > 0 and / > 0 such that for each x0o E 9l we can rotate and translate S to 
get a local Cartesian system Sxo having the following properties: the origin of 

S/o 
coincides with x0; a Lipschitz continuous functioinw exists 

inSSo 
such that it 

maps the segment (-a, a) onto a part of the boundary 0Q9l and, moreover, the sets 
defined in Sxo as 

M< 
= 

{ 
= 

(X1,X2) " 
: 1 E (-a, a) and w(xl) -0 < X2 I< W(l)l, 

M' = {x 
= 

(X1, 22) : X , E (-a, a) and w('x) < 2 < (Xl) ) 

are subsets of Q1 and R 2 \ 1, respectively. 
In the system SXo, 

we fix the point (0, 
inf_<<-,1<a 

w(i1) - P) as the origin of 
a new Cartesian coordinate system Sxo parallel to 

S1o. 
Let us again denote the 

function describing a part of &01 by w. 
Our final goal is to construct a continuously differentiable mapping x. To this 

end, we first define two sets by means of the coordinate system Sxo: 

(4.20) 
M, = {y : yl E (-a, a) and 0 < y2 < W(Y)}, 
M = {y : y E (-a, a) and 0 <y2 <w(y)+}. 

We can suppose that / is small enough to ensure M, C Q1. 
We choose a small parameter e, 0 < E < 0, and approximate w by an infin- 

itely smooth positive function 7r. According to [A, Lemma 2.18], we can assume 
11w - riI| o,(_1,a) 

_ 
<, where 0 < ( < e is an arbitrary small positive value. 

We set up a smooth mapping nr defined on Mg as 

(4.21) KE(y) = (y1, y2+ Y(Y1, Y2)) 
,q(Yl) 

(Y Y,2 ( ) e M2, 

where y is a smooth function on MA, nondecreasing in y2, and such that -y(yi, 0) = 0 
and y(yi, rq(yi)) = r(yi) for yl E (-a, a). Function -y is not specified in detail and 
offers a possibility to appropriately adjust K, to some needs which become apparent 
later. 
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It holds that M, C n ,(M,) because ( is small. The set K, (M,) covers 0%1 in 
the vicinity of xo. 

The set o0%l is compact and therefore can be covered by a finite number, say 
N, of domains Uj, i = 1, 2,..., N, defined by the same manner as MO in (4.20). 
Similarly, we consider functions 7i, mappings yi and define smooth mappings r' on 
Ui (see (4.21)). Adding just one appropriate domain UN+1 C Ql, UN+1 C Ql, we 

get a family 8 of open sets covering Q1, i.e., 
U•=1 

Ui : D . We can assume that 
any point x E Q1 belongs at most to two sets Uj, Uk, j, k e {1, 2,..., N}, j $ k, and 
possibly also to UN+1. Adjusting ,, we can also suppose that if (Uj n Uk) \ 1 # 0, 
then (Uj n Uk) n ,l 0, i.e., if Uj and Uk intersect then the intersection is not a 
proper subset of JR2 \ Ql. 

We define a Co-partition of unity for Q, subordinate to O and denote its func- 
tions by i, i = 1, 2,..., N + 1 (see [N2]). 

We have much freedom in defining yi so we can suppose that a constant 6, 
3 > 6 e, exists such that 

N 

(4.22) Q6 = {x E Q : dist(x, 
0Ql) 

?6 } C U Ui 
i=1 

and that yi(y) = 0 if y E Ui \ ~6/2, where Q,/2 is defined by the parameter 6/2 
used in (4.22) instead of 6. We assume Q6 n UN+I = 0. 

To get a mapping in the global coordinate system S, we transform mappings i 
from the local coordinate systems to the global coordinate system, and we denote 
the transformed mappings by . We define iN+ 1 on UN+1 as an identity mapping. 

Finally, we introduce mappings x;, i = 1,..., N + 1, defined as follows: x~(x)i 
pi(x) .(x) if x E Ui. By the properties of 8, each x, is a smooth mapping and 

has its support contained in Ui. 
Summing up xi and restricting the domain of definition to O1, we get a smooth 

mapping 
N+1 

Xe(X)-- 
=E i(x), E 

X1l. i=1 

The mapping x, is equal to the identity mapping on a subdomain of Q, and, if (, 
E, and yi are properly chosen, it maps the boundary layer Q6/2 Of Q1 onto a larger 
layer containing 0%1l. 

We can label e as so and repeat the above steps for a new parameter E, 0 < E < Eo. 
Two possibilities can happen. Either (, ri, ~i can remain unchanged or we have to 
adjust them appropriately. 

We see that the constant C depends on ( and 7i. But the smaller ( the closer 
C to one we can get. O 

Lemma 4.9. Let x~ be the mapping from Lemma 4.8 with a parameter E > 0. 
Then 

(x) = 
(Y, Y2), Yi i= x + e (x, x2), i = 1,2, x E i, 

where e is a smooth function. Positive constants Ce, C' independent of e exist 
such that 

eel oonC Ce<', 

9 
<EC, i, j 

= 
1,2. d j 00) 
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As a consequence, x; is a one-to-one mapping if e is small, i.e., &Ce < 1, eC, < 1. 

Proof. We can take up the proof of Lemma 4.8. According to (4.21), any mapping 
, i = 1, 2,..., N + 1, is a small perturbation of identity, i.e., ;i(x) = x + ei(), 

eN+- 0. The sum N+1 P(x) equals 1 if x E 
•1 

so 

N 

(x) + (i= W e1 X) =x+e(x), 
i= 1 

e,(X) = (e,(x),e,(x)). 

By the properties of the partition of unity, (4.21), and Lemma 4.8, 

| e < 
',,- C,• 

= 1, 2, 

and Ce is close to one if (, Ti and -i are properly chosen. 
Let us focus on the constant C,. It depends on i j, , i, and their derivatives. 

The partition of unity is fixed, therefore functions opi as well as overlapping parts 
of Ui are fixed too. 

The derivative of Tri can be bounded independently of i and ( because w has 
a fixed Lipschitz constant along the boundary 0Q; i.e., w can be approached by a 
sequence of smooth functions the Lipschitz constant of which is uniformly bounded, 
but possibly different. 

Also, functions yj though indirectly dependent on e can be constructed in such 
a way that their first derivatives are bounded independently of e. 

We infer that functions jpi as well as ri and iy are smooth with first derivatives 
bounded in Q1 independently of e. Thus an eC, bound is guaranteed. O1 

Remark 4.5. Due to the assumption made in the proof of Lemma 4.8, x, maps a 
6/2-layer along 0Q1 onto a (6/2 + e)-layer containing 0Q1. The role e plays here is 
similar to that of a - 1 in the starshaped domain case. We have a lot of freedom in 
choosing iy and thus ensuring both the invertibility of x, and a reasonable value 
of C'. O 

By Lemma 4.9, x< can be constructed as a small perturbation of the identity 
mapping. As a consequence, we can immediately formulate the statement of Lemma 
4.9 for the inverse mapping x,-1. 

Lemma 4.10. Let x, be the mapping from Lemma 4.9 restricted to Q1, and Q3 = 
?x(Q1). Then x,-'(y) = (x1,x2), where xi = yi +g(yl,y2), i = 1,2, maps OQ onto 

Q1. Also, positive constants Cg, C', independent of , exist such that Ilg~ll~oo, < 
ECg, Iag?/0xj _11O 

I Q3<C 
In the next parts, we will follow the ideas presented in the course of the already 

performed analysis of starshaped domains. In contrast to it, we will face formulae 
complicated by some additional terms, the order of which, however, will be equal 
to E. 

We again deal with domains Q1, Q2, and, omitting the superscript e, 

3=--{yE: 
2 . E1 y=X=(X)}, 

where x, is the mapping from Lemma 4.9, 1, C Q2 C Q2 C Q3 C Q3 C B, and Q2 
can be N-unstable. 

Focusing on : 3 1-+ and a differentiable function w(x) = w(x-l1(y)) = 

v(y), we evaluate quantities corresponding to (4.6) applied to x,-1; i.e., the roles of 
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xi and yj are interchanged: 

(4.23) 

9gl g92 91g 9g2 92 gl91 

D= 1 Y2 
a+Y1 

9Y2 OY1 0Y2 

ow •[v +(9 092 v (g2], 
Ox ay aY2 ) Y2 Y1i 

xw lYv gS 
l 

v 91 
Ow _ 0v 

g - ) +VO /D. aX2 aY2 (9y, 1 91 (9Y2 

We can write Vaw = (Vyv + MVv) /D, where the 2 x 2 matrix Mg comprises 
partial derivatives of gl and g2. Let us notice that D > 0 if e is sufficiently small. 

We introduce ule(y) = ul,(x,(x)) = ul(x) and transfer a, (ul, w) from Q1 to 
Q3 

(4.24) 

/ (AVu - Vw + 
bulW dx) 

= j 
A(Vyul, 

+ 
MgVyuie) 

(Vv + 
MgVyv)IDI/D2 

dy 

+ f 
bulevlDIldy 

= AVuj . VvD- dy + a(g; ule, v) + buievD dy 

= an3 (Ul, 7v) + ag(ule, v). 

The forms and ag comprise terms with Mg and 1 - D, it is D-1 = 1+ (1 - D)/D. 
On the basis of Lemma 4.10, 

(4.25) lag(ule, v)l ECIlulelll, v ll1, 3 •5 ECiC 
Gl,, 

llvll2 ,Q 
5 eCIG|1,a~1llvl,ans, v E Hi(e3), 

because IlIUell1,3 ? cG|ll1i,no + IuIHll ,oO(e) ? OC1|G1,n 1 as can be seen from 
(4.23), (2.6), and (2.3). 

Denoting Gl,(y) = Gl(x,-1(y)) = Gi(x), G1 - Gln1, we have 

(4.26) 

SV*G1 
- Vwdx 

1, 

= (V*G,, 
+• 

M*V*G,) 
- 

(Vv + 
Mgv), 

DI/D2 dy 
Q3 

= 
V*GI .- Vv dy + Eg(Gie, v), 

3o 

where M* comprises permuted elements of Mg and Eg(Gle, -) is a continuous linear 
form on H1(Q3). Again, a positive constant C2 independent of e exists such that 

(4.27) IEg(GIe, v) 
?_ 

eC21vll1,~3. 

By (4.24) and (4.26), ul, E H1(23) solves the equation 

aQ3 (u1, v) + 
ag(ul6, 

v) = jQ V*G, . Vvdy + 
Eg(GI, 

v) Vv EH'( 3) 
J3 
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Let us remark that x. and x,-1 transform H1(Q1) onto H1(Q3) and vice versa, 
respectively, because both mappings are sufficiently smooth quasi-isometric map- 
pings (see [M, Section 1.1.7]). 

Our aim is to derive an estimate assessing the difference between ul, and u3, the 
solution of (2.6) on Q3, cf. (4.10). We start with (see (4.25), (4.27)) 

(4.28) 

SaQ3(u3 - ule, )I 
= j (G - G1) 

- Vv dy + 
ag(ule, v) - 

Eg(Gl,'v) 
SIvll1,s3 (IG 

- 
Giell,a3 

+ 
ClIGI1,Qi + eC2). 

We are at the point of estimating IG - Glell,a3, i.e., we need to generalize 
Lemma 4.5. To this end we put two additional assumptions on xe. First, we 
suppose onwards that any two points x and x6(x), x E 1, can be connected by a 
straight segment lying in Q3. Second, as x, are rather unspecified mappings, we 
have to assume that a generalization of Lemma 4.4 holds, i.e., if E L' (Q3) C(Q3) 
is a nonnegative function, then 

(4.29) j f(X)p(z) dz dx < eC J ?(x) dx, 

where C > 0 does not depend on E. 

Lemma 4.11. Let G E H2(Q3) and G1, be the composite of GIQ, and xE'1 from 
Lemma 4.10. Then 

IG - Gle1,i < < eC3 (IGII,a~ + IG12,Q3), 
where C3 is a positive constant independent of E and G. 

Proof. We will write G, and x instead of G1, and x6, respectively. First, we assume 
that G e C`(B). Then G, is also smooth on Q3. 

By Lemma 4.9 and (4.23) adapted to x, we observe, if j = (y, y2) = x(Xi) and 

- el 0e2 0e1 0e2 ae2 0el D= 1+ + + 
Ox1 Ox2 Ox1 Ox2 Ox1 O2 

that 

(4.30) 

OG, () GE ,y, (y)e( - Oyl 

+[OG(5) 
e2() GC(E ) 

ae2()1 /) 
ax, aZ2 aX2 ax1 

aG(Y) aG(X) 1- D(Y) 

ax ,l 8 x l D (E ) 

+ 
aG(-) ae2 (E) - G(x) IeD(2 
Oxl 1O2 OX2 Ox1 

OG(x) +G(y) 
Ox 

= 
+ O ( - yl Y=i 

where function 01 comprises all terms with partial derivatives of el, e2. The last 
equality is (4.12) in essence. 
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Thus we get 

(4.31) IG,y (y) - Ge,Yl(y )I I G, (y-) - G,1 (X)I + |11(X)I. 
Connecting X and y by a straight segment, we estimate 

|G, (y-) - G, (X)I 
-< 

jIVG,, (z)I dz = p2(X). 

Integrating (4.31) over Q3, we infer 

(4.32) 
/ (G,ly - Ge,Y,)2 dy < j (I"1(x) + 

2(X))2 
1D(x)I dx 

3s J1 

(= (2 + 21001 + V) IDI dx - 

I1 +/2 
+ 3. 1J2 

By (4.30) and Lemma 4.9 

(4.33) 

11 

= 1DI| dx < e2C IVG2 dx = e2CIG = = 
o lr, 

where C > 0 is a constant independent of G and e if 0 < e < co and so is a small 
parameter. 

On the basis of (4.29) we get 

(4.34) 

13 = x(x)V IVG, I dz)2D dx 
1 

SIVGx,12 dz dx 
E2C VG,12 dx, 

where a positive constant C does not depend on e, 0 < e Eo, and G. 
Finally, applying (4.33), (4.34), and the Schwarz inequality, we infer 

(4.35) 

12 = 2j f|JO02IJDI dx 
1 

_ 
2C V)2d 1/2 d2 12 d21 C'Gl|l, , lIG,x I1,3l, ( o 1 ( 

3 

where, again, C' > 0 is independent of e and G. 
Plugging (4.33)-(4.35) into (4.32), we arrive at 

j (G,y, - GE, 1)2 dy e2C32 
(IGI,,1, 

+ IG,x I1,Q3)2 /2. 
3s 

The estimates for G,Y2 - Ge,y2 can be derived in a similar way. Referring to the 
density of smooth functions in H2( 3), we finish the proof. O 

Applying Lemma 4.11 to (4.28) with v = u3 - Utl, we generalize Lemma 4.6. 

Lemma 4.12. If G E H2(Q3), then 

(4.36) I1u3 - 
U1elA,Q3 

? 69, 

where = CAb1/2 [(C1 ? C3)|Gl,~n, + C3IGI2, 3 + C2]. Constants C1, C2, and C3 
come from (4.25), (4.27), and Lemma 4.11. 

We also adjust Lemma 4.1. 
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Lemma 4.13. Let us assume both VG E [L"(Q13)]2 and measQ13 EC4CAb/2, 
C4 is a positive constant independent of e. Then 

(4.37) u12,Q12 + II23 A,23 EC4VGO, 
We need some analogy to the inequality in (4.8). By (4.24) we have 

(4.38) 2IIU ,, = 2, + ag(UiE, U1e). 
II11A,• 

l 
el -- I QU3] --agU eU • 

Let us consider a domain Q2, ?1 C Q2 c ?2 C Q3. Proceeding as in the 
starshaped domain case, we can formulate a generalization of Theorem 4.1. 

Theorem 4.2. Let Q1, Q2, and Q3 be the domains introduced in previous para- 
graphs, and let ul and u2 be the respective solution to (3.1) on Q1, H = 

H1(Q1), and Q2, H = H. Let x, be the mapping from Lemma 4.9, Q3 = C 
l(Q1). 

Assume 
VG E [L'"(13)]2 and G E H2(Q3). Then 

IU2 - UlI,H1 
_ 

6C, 
where a positive constant C depends on IGll ,1 , IGCl,a3, IGI2,3, IIVGlloo,13I, and 
constants CAb, C1, C1, C2, C3, and C4, but is independent of E, 0 < e Eo, if so is 
sufficiently small. 

Proof. By (4.38), the triangle inequality, (4.25), and (4.36), 

Ilu A,Q, = IlUlEl A,i3 + ag(lle, Ule) 

?(iiu, - 3 IIA,Q3 + IIU3IA,Q3)EC 1lGIl,,~ nuE| I 
,aQ 

SE2p + 2E1u31 A,s - U3 11A,, + E CC•1 1 G 12 E + 2 E O II 
3a1l , 1? 

We estimate 2eOIIU311A,a3 by means of IGIl,a3 and get 

(4.39) I 
2 
A, -u311 

2j + 
20eCA/2 IGl,a? + 

EClCIGI ,•1 
ilul 11' 7 IQ3 .1-Lu 7Q3 + EC101IG 

To finish the proof, we plug (4.37) and (4.39) into (4.5): 

IIU2 - ulll,~1 
2 + 

2eOCA/2IGll~,3 
? 

•C1CIG| 
?C2 124VG SEClIGI 7Q1, +-eC41l1VGI ( ,IRl3 __ where C > 0 depends on G. O 

An analogy to Remark 4.4 is also valid. 
Let us again emphasize that the estimate of 11u2 - U1IIA,Q1 and 

fIu3 
- 

u211A,I2 
depend neither on the particular domain Q2 nor its stability status, provided that 
Q2 is approximated from inside and outside by Q1 and Q3, respectively. As a con- 
sequence, the estimate applies also to solutions 

um 
mentioned in the introductory 

paragraphs of Section 4. 

5. STABILITY OF Q UNDER GENERAL CONVERGENCE Qn -- Q 

We will show that if Q is N-stable with respect to monotone convergence 
SQn / Q, Qn "\ , then it is also stable (in a natural sense) with respect to a 

general convergence Qn --+ . 
Let 0Q = OK and 

{(n,}=, 
be a sequence of domains with Lipschitz boundary 

such that On -- Q in the set sense. such that Q.,n -4fQ in the Set sense. 
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We can construct sequences {Q}'T} and {f2 }Q 
_ 

such that O2t, 
OQn 

are 

Lipschitz or even smooth, n C C , and T / , 7 . The spaces 
HT, HI and functions UG, UG are defined via these sequences (see Section 3). 

Let (uTI }' and {uiI }nl 
be the sequences of the solutions of (3.1) on 

Tn 
and 

Q2, respectively, n = 1, 2, .... 

Theorem 5.1. Let Q be stable with respect to the Neumann boundary value problem 
and monotone sequences of domains, i.e., Ht = HI and UG = UG. Then 

lim IIa - UnIA,, = 0 = lim IIUT - unlA , .' n-*oo n"-+Oo 

Proof. We wish to benefit from (4.5) and Remark 4.4. To this end we identify 

2n, 
Qn and 

Qn 
with Q1, Q2 and ~3, respectively (see Section 4). We denote the 

respective solutions of (4.1) by u 2 and u . 
Let us notice that by (4.1) and (2.3) 

I[unItA,~i 
K C, i = 12,23, where C is a 

positive constant independent of n, cf. the beginning of the proof of Lemma 3.1, 
for instance. 

By Remark 4.4 and (4.1) 

I u1 - ul12421 ? I+lflI231 - I112I2 +Iu A,1 \ l IA\, A,' U 1' - Hn A QtT I~n22 
- 

Q, &+ +IIIll\, 

< I 112lA,.Z -Ilu 112 a,0 + 2CGlxllni?\n " 
The right-hand side of the inequality tends to zero by virtue of Lemma 3.2, Lemma 
3.3 (see (3.16)) and lim -o meas(RQ \ Q•) = 0. This and (4.5) also proves the 
other limit. O 

6. EXAMPLE, APPLICATIONS, AND CONCLUSIONS 

Let us go back to Example 1.1 presented in the Introduction. 
Based on the theory expounded in previous sections, the proposed approach to 

Neumann boundary value problems on uncertain domains consists in approximating 
the uncertain domain Q by known domains Q1ow and Qup7, 1ow c Q C I C Qup, 
in setting the BVP with the boundary condition formulated in the nonclassic way 
elaborated in Section 2, in solving the BVP on Q.ow and uup, respectively, and in 
applying estimates based on (4.5). Though a simple idea, it is not easy to bring it 
to life. 

Figure 1 shows the original pixel domain in 256 levels of the gray color. Setting 
the threshold for white color to 123, we produced Figure 2 (left). Choices 63 and 
190 lead to Figure 3 (left) and (right), respectively. We can see that the domain in 
Figure 3 (right) is embedded into the domain in Figure 2 (left), and this domain 

FIGURE 3. Postprocessing: Low threshold (left), high threshold (right) 
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is further embedded to the largest domain depicted in Figure 3 (left). We can also 
observe deterioration of the images. The domain in Figure 2 (left) seems to be 
quite acceptable, whereas white pixels in Figure 3 (left) do not create a connected 
set. Figure 3 (right) shows a connected white set but its connectivity is far more 
multiple than in Figure 2 (left). 

The question arises of how to choose threshold values. The bigger the difference 
between them, the larger the difference between respective white areas, and the 
greater the amount of uncertainty taken into consideration. Also, threshold values 
that are too low or too high would force the domain's pixels to turn into background 
pixels due to uneven contrast and brightness or noise superimposed onto the basic 
signal. 

A rule of thumb could be to define a function describing the dependence of the 
total white area on the threshold value. Experience shows that such a function has 
a rapid decay for low and high thresholds and a slow decay in between. Values, 
where the slope of the function starts and ends to be moderate, seem to be a good 
choice to define Qlow and 

Qtup* 
If we suppose that the digitalized domain is connected, then by observing the 

number of connected white sets implied by threshold settings we can also arrive at 
reasonable approximations of Q. 

Both approaches can be combined and, moreover, we can add a two-pixel-wide 
white layer to our upper approximation of Q to get a strengthened Rup. By adding 
a black layer, we can get a strengthened Ql0ow. According to experiments, details 
beneath 1.5 pixel size are almost invisible. That is why we suggest adding layers 
two pixels wide. 

We can also introduce some calibration stemming from a comparison between 
measured properties of a real sample and results of a digital image based compu- 
tation. 

Another difficulty arises if we compare the physical domain Q with its, possibly 
postprocessed, digital images. It can happen that we do not get an upper or 
lower estimate of Q simply because all details (e.g., cracks, micro-holes, and thin 
projections) below the digital image resolution are invisible or merged with other 
sources of pollution and noise. 

This implies that though we wish to take into account as much uncertainty as 
is possible and reasonable, we still must make some assumptions. Basically, we 
have to assume that the digital image is a good representation of Q in the sense 
that a manipulation with digital data can deliver reasonable domains Olow and ,up 
estimating fQ from inside and outside, respectively. The notion reasonable is vague 
but it certainly does not mean whole white and black rectangles we can always 
produce as certainly true upper and lower estimates. 

Having Qlow and Qup, we can apply the presented theory. Let us remark that 

Qlow and Qup need not be pixel domains. They can have a piecewise smooth 
boundary (cf. Figure 2 (right)) as requested by computational methods, say, the 
finite or boundary elements. Thus we lose, however, the mesh formed from pixels 
which could be directly used in calculations. 

From the computational point of view of the finite element method, it is ad- 
vantageous, if the coefficients of the equation are constant, to have ?low and ,up 
starshaped, fup = a0low, a > 1, because in that case we can assemble only one 
stiffness matrix as the other depends on a in a simple way. 
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If Qlow, and ,up are not starshaped, they differ by a layer of elements which, if 
properly numbered, will lead to two different stiffness matrices, the smaller being 
a block of the larger one. This speeds up direct solving of the system of linear 
algebraic equations. One can also expect that solutions on low and wup will not 
differ much; i.e., that one solution can be used as a good initial guess in an iterative 
solver to get the other solution. 
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